Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Duisbu...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.17185/du...
Other literature type . 2021
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Exergoeconomic analysis of hybrid sCO2 Brayton power cycle

Authors: Alenezi, Abdurrahman; Vesely, Ladislav; Kapat, Jayanta;

Exergoeconomic analysis of hybrid sCO2 Brayton power cycle

Abstract

An exergoeconomic analysis of a hybrid power generation cycle is performed on its standalone constituents. The hybrid is based on Allam cycle configuration. Allam cycle is a supercritical carbon dioxide oxy-combustion (OC) Brayton cycle. The proposed hybrid utilizes solar power as its primary heat source and natural gas OC as a complementing heat source. The purpose of the complimenting heat source is to make up for the lost time when the sun is not available due to bad weather conditions or at nighttime. This is done to ensure the reliability, responsiveness, and availability of the cycle for power generation at all times. The hybrid is an attempt to provide power with minimal adverse effects on the environment. This study is divided into three major steps. The first and second are energy and exergy analysis. The third step is exergoeconomic analysis to obtain the cost contribution of each component relative to the cycle’s final product. Although both configurations brought similar power output and second law efficiency, the energy efficiency was higher for the OC configuration. The total product cost ($/GJ) for the OC configuration was half of that for the concentrated solar power (CSP). The unit cost of electricity in (Cent/kWh) for the CSP standalone configuration is approximately 60% higher than that of the OC configuration. In the CSP configuration, the main heat exchanger and the recuperator are the most critical units to consider for savings. Therefore, reducing the exergy destruction in the CSP main heat exchanger and the recuperator units could be cost-effective for the entire cycle, even if this would increase the component investment costs. Therefore, for exergoeconomic performance enhancement, using a recuperator with higher efficiency is recommended. On the other hand, the combustor and air separation unit (ASU) are the most critical units to consider for savings for the OC configuration. Therefore, a replacement for the ASU unit with a lower purchasing cost is recommended for overall exergoeconomic performance enhancement. The parametric study results showed that increasing the turbine’s inlet temperature is conducive to improving both configurations' thermodynamic and exergoeconomic performances. Similar trends were also obtained for the turbine inlet pressure for both configurations.

Conference Proceedings of the European sCO2 Conference4th European sCO2 Conference for Energy Systems: March 23-24, 2021, Online Conference, p. 363

Country
Germany
Related Organizations
Keywords

ddc:620, 621, 620, Externe » Sonstige Einrichtungen, ddc: ddc:620

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Top 10%
Top 1%
Green
hybrid