Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy
Article . 2022 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Archive ouverte UNIGE
Article . 2022
License: CC BY NC
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Techno-economic assessment and operational CO2 emissions of High-Temperature Aquifer Thermal Energy Storage (HT-ATES) using demand-driven and subsurface-constrained dimensioning

Authors: Alexandros Daniilidis; Julian E. Mindel; Fleury De Oliveira Filho; Luca Guglielmetti;

Techno-economic assessment and operational CO2 emissions of High-Temperature Aquifer Thermal Energy Storage (HT-ATES) using demand-driven and subsurface-constrained dimensioning

Abstract

High-Temperature – Aquifer Thermal Energy Storage (HT-ATES) can significantly increase Renewable Energy Sources (RES) capacity and storage temperature levels compared to traditional ATES, while improving efficiency. Combined assessment of subsurface performance and surface District Heating Networks (DHN) is key, but poses challenges for dimensioning, energy flow matching, and techno-economic performance of the joint system. We present a novel methodology for dimensioning and techno-economic assessment of an HT-ATES system combining subsurface, DHN, operational CO 2 emissions, and economics. Subsurface thermo-hydraulic simulations consider aquifer properties (thickness, permeability, porosity, depth, dip, artesian conditions and groundwater hydraulic gradient) and operational parameters (well pattern and cut-off temperature). Subject to subsurface constraints, aquifer permeability and thickness are major control variables. Transmissivity ≥ 2.5×10 -12 m 3 is required to keep the Levelised Cost Of Heat (LCOH) below 200 CHF/MWh and capacity ≥ 25 MW is needed for the HT-ATES system to compete with other large-scale DHN heat sources. Addition of Heat Pumps (HP) increases the LCOH, but also the nominal capacity of the system and yields higher cumulative avoided CO 2 emissions. The methodology presented exemplifies HT-ATES dimensioning and connection to DHN for planning purposes and opens-up the possibility for their fully-coupled assessment in site-specific assessments.

Countries
Switzerland, Switzerland, Netherlands
Related Organizations
Keywords

info:eu-repo/classification/ddc/333.7-333.9, 670, info:eu-repo/classification/ddc/550, ddc: ddc:333.7-333.9, ddc: ddc:550

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 4
    download downloads 8
  • 4
    views
    8
    downloads
    Data sourceViewsDownloads
    TU Delft Repository48
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
17
Top 10%
Average
Top 10%
4
8
Green
hybrid