Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Policyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Policy
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Accounting greenhouse gas emissions in the lifecycle of Brazilian sugarcane bioethanol: Methodological references in European and American regulations

Authors: Joaquim E. A. Seabra; Arnaldo Walter; Semida Silveira; Dilip Khatiwada;

Accounting greenhouse gas emissions in the lifecycle of Brazilian sugarcane bioethanol: Methodological references in European and American regulations

Abstract

Abstract This study discusses four European and American regulatory schemes designed for accounting lifecycle GHG emissions in relation to the Brazilian sugarcane ethanol. The objective is to critically examine the methodologies and associated parameters used in existing regulatory schemes for calculating GHG emissions, and to explore methodological convergences. The issues related to direct lifecycle and indirect land use change emissions have been addressed. It is found that there are commonalities between the European Renewable Energy Directive (EU-RED) and the UK's Renewable Transport Fuels Obligation (UK-RTFO), but the US-EPA's Renewable Fuel Standard (US-EPA) and the Low Carbon Fuel Standard of the California Air Resources Board (CA-CARB) vary greatly not only among themselves, but also in relation to the European regulations. Agricultural practices (especially soil carbon and nitrogen dynamics), co-product credits from surplus electricity and uncertainties around economic modeling approaches for indirect land use change are the major areas where methodological divergences exist. Incorporation of domestic agricultural practices, sugarcane mills operations, and realistic modeling of indirect impacts of land use change using regional models could provide more coherence in estimations of GHG emissions. Furthermore, the Brazilian trend of novelty in all phases of sugarcane bioenergy systems should be considered when projecting GHG emissions.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Top 10%
Top 10%
Top 10%