Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Pollut...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Environmental Pollution
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Characteristics of air pollutants inside and outside a primary school classroom in Beijing and respiratory health impact on children

Authors: Hiroshi Morisaki; Quanyu Zhou; Masayuki Shima; Lulu Zhang; Lu Yang; Kazuichi Hayakawa; Zhigang Li; +6 Authors

Characteristics of air pollutants inside and outside a primary school classroom in Beijing and respiratory health impact on children

Abstract

This study investigated the spatial and temporal distributions of particulate and gaseous air pollutants in a primary school in Beijing and assessed their health impact on the children. The results show that air quality inside the classroom was greatly affected by the input of outdoor pollutants; high levels of pollution were observed during both the heating and nonheating periods and indicate that indoor and outdoor air pollution posed a threat to the children's health. Traffic sources near the primary school were the main contributors to indoor and outdoor pollutants during both periods. Moreover, air quality in this primary school was affected by coal combustion and atmospheric reactions during the heating and nonheating periods, respectively. Based on the estimation by exposure-response functions and the weighting of indoor and outdoor pollutants during different periods, the levels of PM2.5, PM 10 and O3 at school had adverse respiratory health effects on children. Longer exposures during the nonheating period contributed to higher health risks. These results emphasized that emission sources nearby had a direct impact on air quality in school and children's respiratory health. Therefore, measures should be taken for double control on air pollution inside and outside the classroom to protect children from it.

Related Organizations
Keywords

Air Pollutants, Schools, Respiratory Tract Diseases, Environmental Exposure, Coal, Air Pollution, Indoor, Beijing, Humans, Particulate Matter, Child, Environmental Monitoring

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    54
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
54
Top 1%
Top 10%
Top 1%