
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Evaluation of impact of "2+26″ regional strategies on air quality improvement of different functional districts in Beijing based on a long-term field campaign

pmid: 35597294
Consecutive measurements of ambient fine particulate matter (PM2.5) from February 2016 to April 2018 have been performed at four representative sites of Beijing to evaluate the impact of "2 + 26" regional strategies implemented in 2017 for air quality improvement in non-heating period (2017NH) and heating period (2017H). The decrease of PM2.5 were significant both in 2017NH (20.2% on average) and 2017H (43.7% on average) compared to 2016NH and 2016H, respectively. Eight sources were resolved at each site from the PMF source apportionment including secondary nitrate, traffic, coal combustion, soil dust, road dust, sulfate, biomass/waste burning and industrial process. The results show that the reductions of industrial process, soil dust, and coal combustion were most effective among all sources at each site after the regional strategies implementation with the large reductions in potential source areas. The decrease of coal combustion in 2017NH were larger than 2017H at all sites while that of soil dust and industrial sources were the opposite. Insignificant reduction of coal combustion contribution at the suburban site in the heating period indicated that rural residential coal burning need further control. The industrial source control in the suburbs were least effective compared with other districts. Traffic was the largest contributer at each site and control of traffic emissions were more effective in 2017H than 2017NH. The local nature and increase of biomass/waste burning contributions emphasized the effect of fireworks and bio-fuel use in rural areas and incinerator emissions in urban districts. Secondary nitrate and sulfate were mainly impacted by the regional transport from southern adjacent areas and favorable meteorological conditions played an important part in the PM2.5 abatements of 2017H. Secondary nitrate became a more major role in the air pollution process because of the larger decrease of sulfate. Finally suggestions for future control are made in this study.
- University of Rochester United States
- Chinese Academy of Sciences China (People's Republic of)
- Sino-Japan Friendship Center for Environmental Protection China (People's Republic of)
- Clarke University United States
- Clarke University United States
Air Pollutants, China, Nitrates, Sulfates, Dust, Quality Improvement, Soil, Coal, Air Pollution, Beijing, Particulate Matter, Seasons, Environmental Monitoring, Vehicle Emissions
Air Pollutants, China, Nitrates, Sulfates, Dust, Quality Improvement, Soil, Coal, Air Pollution, Beijing, Particulate Matter, Seasons, Environmental Monitoring, Vehicle Emissions
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
