Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environmental Resear...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental Research
Article . 2022 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Biomass-based micronutrient fertilizers and biofortification of raspberries fruits

Authors: Mateusz Samoraj; Grzegorz Izydorczyk; Paweł Krawiec; Konstantinos Moustakas; Katarzyna Chojnacka;

Biomass-based micronutrient fertilizers and biofortification of raspberries fruits

Abstract

The increasing amount of bio-waste creates the need to develop a method for efficient management based on processes that are more environmentally friendly than incineration and composting. This research aimed to utilize the waste of raspberry seeds after supercritical CO2 extraction. The biomass was enriched with micronutrients by the biosorption process to prepare micronutrient fertilizers for organic farming and biofortification of raspberries fruits. It was observed that at 100% dose of micronutrients, raspberry crop yield increased by 3%, and transfer of micronutrients to fruit biomass increased by 4.7%, 6.4%, and 8.8% (Cu, Mn, Zn, respectively) compared to commercial fertilizer. The supply of micronutrients at a dose of 150% led to a significant increase in micronutrient content of 3%, 41%, and 8% (Cu, Mn, and Zn, respectively) compared to commercial fertilizer. Research shows that the application of higher doses of micronutrients leads to the enrichment of edible parts of fruits, and fertilizers ensure environmental safety. The fruits contained on average 11.5% more microelements compared to the groups fertilized with the commercial product. The fruit yield (9.09-10.4 Mg per hectare) and the sugar content (9.82-10.2%) were also the highest. The micronutrients released from fertilizers and available to plants throughout the vegetation period affect the increase in yield, especially in the case of plants fruiting several times a year.

Keywords

Carbon Dioxide, Trace Elements, Soil, Fruit, Biomass, Micronutrients, Fertilizers, Rubus, Sugars, Biofortification

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
hybrid