
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Estimating daily meteorological data and downscaling climate models over landscapes

Abstract High-resolution meteorological data are necessary to understand and predict climate-driven impacts on the structure and function of terrestrial ecosystems. However, the spatial resolution of climate reanalysis data and climate model outputs is often too coarse for studies at local/landscape scales. Additionally, climate model projections usually contain important biases, requiring the application of statistical corrections. Here we present ‘meteoland’, an R package that integrates several tools to facilitate the estimation of daily weather over landscapes, both under current and future conditions. The package contains functions: (1) to interpolate daily weather including topographic effects; and (2) to correct the biases of a given weather series (e.g., climate model outputs). We illustrate and validate the functions of the package using weather station data from Catalonia (NE Spain), re-analysis data and climate model outputs for a specific county. We conclude with a discussion of current limitations and potential improvements of the package.
Statistical downscaling, Drought stress, 550, [SDE.MCG]Environmental Sciences/Global Changes, 551, Regional climate model, [SDE.MCG] Environmental Sciences/Global Changes, Weather interpolation, Bias correction, Climate change
Statistical downscaling, Drought stress, 550, [SDE.MCG]Environmental Sciences/Global Changes, 551, Regional climate model, [SDE.MCG] Environmental Sciences/Global Changes, Weather interpolation, Bias correction, Climate change
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).87 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
