Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy for Sustainab...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy for Sustainable Development
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fuel efficiency and air pollutant concentrations of wood-burning improved cookstoves in Malawi: Implications for scaling-up cookstove programs

Authors: Pamela Jagger; Charles B.L. Jumbe; Ashley Bittner; Joseph A. Pedit; Tione Phwandapwhanda; Laura Hamrick;

Fuel efficiency and air pollutant concentrations of wood-burning improved cookstoves in Malawi: Implications for scaling-up cookstove programs

Abstract

National governments and other key stakeholders in developing countries are grappling with how to reduce household air pollution (HAP) resulting from cooking with solid fuels using traditional cooking technologies. Recent studies have shown that improved cookstoves may offer reductions in fuel use and harmful emissions of carbon monoxide (CO) and fine particulate matter (PM2.5), yet there is little quantitative evidence collected in a "real-world" setting showing how improved stoves perform directly compared to traditional cooking technologies. Our simulated kitchen study takes place in a semi-controlled, "real-world" setting in Malawi and was designed to quantify the fuel efficiency improvements and air pollutant concentration reductions capabilities of two improved stoves currently marketed in the country. In this study, we perform a Water Boiling Test (WBT) to compare the air pollutant concentrations (CO and PM2.5) and fuel efficiency of the traditional three-stone fire stove and two improved cookstoves: a locally produced clay stove known as the Chitetezo Mbaula (CM) and a Philips gasifying stove. We find that the Chitetezo Mbaula uses 53% of the fuel used by the traditional three-stone fire, and produces 59% of CO, and 50% of PM2.5 of the three-stone fire. The Philips gasifying stove uses 31% of the fuel, and produces 38% of CO, and 22% of PM2.5 of the traditional three-stone fire. We consider the potential for the wide-scale adoption of each of these technologies given their relative costs and conclude that lower-cost, intermediate quality cookstoves are an important and realistic first step toward reducing household air pollution.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Top 10%
Top 10%
bronze