Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRIS Cnrarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Energy Storage
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimizing the discharge process of a seasonal sorption storage system by means of design and control approach

Authors: Crespo A.; Frazzica A.; Fernandez C.; de Gracia A.;

Optimizing the discharge process of a seasonal sorption storage system by means of design and control approach

Abstract

Sorption thermal energy storage systems have higher energy densities and low long-term thermal losses compared to traditional energy storage technologies, which makes them very attractive for seasonal heat storage application. Although they have a lot of potential at material level, its operation and system implementation for residential application requires further study. The performance of a seasonal sorption thermal energy storage system strongly depends on the discharging process during the cold season. The present study analysed through numerical simulations different scenarios to enhance the thermal performance of a solar-driven seasonal water-based sorption storage, which supplied space heating and domestic hot water to a single-family house in a cold climate region. All studied scenarios were analysed under optimal control policy. The results indicated that the sorption storage could increase by 9 % its energy density if conservative and constant discharging temperature set points are considered, due to fewer interruptions during the discharge. The energy density of the sorption storage driven by solar energy was highly impacted by the weather conditions, and by the type and availability of low-temperature heat source. Indeed, the energy density of the sorption storage increased by 22 % using a water tank to assist the evaporator of the sorption storage, instead of a latent storage tank. The use of a dry-heater to assist the evaporator with environmental heat was not suitable for the climate studied due to the low hours of operation. The sorption storage system composed of 20 modules of LiCl-silica gel could obtain an energy density and a COP of 139 kWh/m3 and 0.39, respectively, if a constant low-temperature heat source (i.e, geothermal or waste energy) was available.

Countries
Italy, Spain, Spain
Keywords

Solar thermal energy, Numerical simulations; Performance and control optimization; Seasonal thermal energy storage; Solar thermal energy; Sorption heat storage, Performance and control optimization, Seasonal thermal energy storage, Numerical simulations, Sorption heat storage

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Top 10%
Green
hybrid