Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio Istituziona...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Forest Ecology and Management
Article . 2014 . Peer-reviewed
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Summer climate variability over the last 250years differently affected tree species radial growth in a mesic Fagus–Abies–Picea old-growth forest

Authors: CASTAGNERI, DANIELE; P. Nola; R. Motta; CARRER, MARCO;

Summer climate variability over the last 250years differently affected tree species radial growth in a mesic Fagus–Abies–Picea old-growth forest

Abstract

Abstract Sustainable forest management has to consider the long-term effects of climate change on species growth to develop adaptation measures. In this perspective, dendrochronology provides valuable information on climate-growth relationships over long time periods. Tree-ring analyses in mixed stands can elucidate how different species respond to climate change within the same environmental conditions. However, few studies have investigated such stands, especially in South-Eastern Europe. In the forest reserve of Lom, in Bosnia and Herzegovina, we had the opportunity to study three co-occurring species (silver fir, Norway spruce, European beech) in an old-growth forest characterized by reduced human and natural disturbances, and a climate favourable to the tree species. We evaluated tree growth response to climate on inter-annual and decadal time scales over about 250 years. Response to inter-annual climate variability changed over the study period. Climate signal in beech was generally low, with a negative correlation to April temperature in the last decades. In fir and spruce, the positive effect of current year’s spring temperature decreased, while the negative effect of the previous summer temperature considerably increased over the last century. At the decadal scale, different responses have been detected among species: spruce was mostly negatively affected by summer temperature whereas summer precipitation benefited fir growth, probably balancing high evapotranspiration. Beech showed a peculiar delayed response, and protracted drought periods led to severe growth reductions. Despite a temperature increase over the last three decades, fir did not experience any growth reduction, while a strong decline was evident in spruce and beech productivity. Mesic sites are commonly underrepresented in tree-ring research. In our analysis, covering about 250 years, we observed that climate also affects species-specific growth patterns in these areas. Within a global change perspective, specific divergent responses are likely to occur even where current environmental conditions appear to be not limiting for tree species. Future management strategies should consider these outcomes.

Country
Italy
Keywords

580, Old-growth, 634, 333, Decadal growth fluctuation, Climate change, Tree ring

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    52
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
52
Top 10%
Top 10%
Top 10%
Green