
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Continuous pyrolysis of waste tyres in a conical spouted bed reactor

Abstract Continuous pyrolysis of scrap tyres has been carried out in a conical spouted bed reactor and the results (yields, composition of the volatile fraction and carbon black properties) have been compared with those obtained operating in batch mode in a previous study. Continuous operation in the 425–600 °C range gives way to a yield of 1.8–6.8 wt.% of gases, 44.5–55.0 wt.% of liquid fraction (C5–C10 range hydrocarbons, with a maximum yield of limonene of 19.3 wt.% at 425 °C), 9.2–11.5 wt.% of tar C 11 + and 33.9–35.8 wt.% of char. The main differences between the continuous and batch processes are in the yield of light aromatics, which is higher in the continuous process, and in that of the heavy liquid fraction or tar, which is higher in the batch process. These are the advantages of the continuous process, although hydrogenation of the liquid fraction is required even in this case in order to use it as fuel. The high yield of limonene, the flexibility in the operating conditions and the capacity for a continuous removal of the residual carbon black from the reactor are the advantages of conical spouted bed technology. The excellent performance of the conical spouted bed reactor for the tyre pyrolysis process is due to the solid cyclic movement, the good contact between phases, the high heating rate and the reduced residence time of the volatile products.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).185 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
