Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Fuelarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Fuel
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Bioethanol production from hydrothermal pretreated wheat straw by a flocculating Saccharomyces cerevisiae strain – Effect of process conditions

Authors: Ruíz, Héctor A.; Silva, Daniel Pereira da; Ruzene, Denise S.; Lima, Luís; Vicente, A. A.; Teixeira, J. A.;

Bioethanol production from hydrothermal pretreated wheat straw by a flocculating Saccharomyces cerevisiae strain – Effect of process conditions

Abstract

Abstract Wheat straw is nowadays being considered a potential lignocellulose raw material for fuel ethanol production of second generation and as an alternative to conventional fuel ethanol production from cereal crops. In the present study, hydrothermal pretreated wheat straw with high cellulose content (>60%) at 180 °C for 30 min was used as substrate in simultaneous saccharification and fermentation (SSF) process for bioethanol production using a thermotolerant flocculating strain of Saccharomyces cerevisiae CA11. In order to evaluate the effects of temperature, substrate concentration (as effective cellulose) and enzyme loading on: (1) ethanol conversion yield, (2) ethanol concentration, and (3) CO 2 concentration a central composite design (CCD) was used. Results showed that the ethanol conversion yield was mainly affected by enzyme loading, whereas for ethanol and CO 2 concentration, enzyme loading and substrate concentration were found to be the most significant parameters. The highest ethanol conversion yield of 85.71% was obtained at 30 °C, 2% substrate and 30 FPU of enzyme loading, whereas the maximum ethanol and CO 2 concentrations (14.84 and 14.27 g/L, respectively) were obtained at 45 °C, 3% substrate and 30 FPU of enzyme loading, corresponding to an ethanol yield of 82.4%, demonstrating a low enzyme inhibition and a good yeast performance during SSF process. The high cellulose content obtained in hydrothermal pretreatment and the use of a thermotolerant flocculating strain of S. cerevisiae in SSF suggest as a very promising process for bioethanol production.

Country
Portugal
Keywords

Hydrothermal pretreatment, Science & Technology, Bioethanol, Wheat straw, Flocculating yeast, Simultaneous saccharification and fermentation (SSF)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    97
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 1
  • 1
    views
    Data sourceViewsDownloads
    Universidade do Minho: RepositoriUM10
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
97
Top 1%
Top 10%
Top 10%
1
Green
bronze