
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A laminar burning velocity and flame thickness correlation for ethanol–air mixtures valid at spark-ignition engine conditions

handle: 1854/LU-3079146
A laminar burning velocity and flame thickness correlation for ethanol–air mixtures valid at spark-ignition engine conditions
The use of biomass-derived ethanol in spark-ignitionengines is an interesting option to decarbonize transport and increase energy security. An engine cycle code valid for this fuel, could help to explore its full potential. Crucial building blocks to model the combustion in ethanolengines are the laminarburningvelocity and flamethickness of the ethanol–air–residuals mixture at instantaneous cylinder pressure and temperature. This information is often implemented in engine codes using correlations. A literature survey showed that the few available flamethicknesscorrelations have not yet been validated for ethanol. Also, none of the existing ethanollaminarburningvelocitycorrelations covers the entire temperature, pressure and mixture composition range as encountered in spark-ignitionengines. Moreover, most of these correlations are based on measurements that are compromised by the effects of flame stretch and the occurrence of flame instabilities. For this reason, we started working on new correlations based on flame simulations using a one-dimensional chemical kinetics code. In this paper the published experimental data for the laminarburningvelocity of ethanol are reviewed. Next, the performance of several reaction mechanisms for the oxidation kinetics of ethanol–airmixtures is compared. The best performing mechanisms are used to calculate the laminarburningvelocity and flamethickness of these mixtures in a wide range of temperatures, pressures and compositions. Finally, based on these calculations, correlations for the laminarburningvelocity and flamethickness covering the entire operating range of ethanol-fueled spark-ignitionengines, are presented. These correlations can now be implemented in an engine code.
- Technical University Eindhoven TU Eindhoven Research Portal Netherlands
- Eindhoven University of Technology Netherlands
- Technical University Eindhoven Netherlands
- Technical University Eindhoven Netherlands
- Ghent University Belgium
Technology and Engineering, Ethanol, Modeling, MODEL, COMBUSTION, Thermodynamic, TEMPERATURES, Spark-ignition engine, Laminar burning velocity, SDG 7 - Affordable and Clean Energy, SPEED, SDG 7 – Betaalbare en schone energie, ISOOCTANE
Technology and Engineering, Ethanol, Modeling, MODEL, COMBUSTION, Thermodynamic, TEMPERATURES, Spark-ignition engine, Laminar burning velocity, SDG 7 - Affordable and Clean Energy, SPEED, SDG 7 – Betaalbare en schone energie, ISOOCTANE
1 Research products, page 1 of 1
- 2019IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).43 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
