Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Fuel
Article . 2014 . Peer-reviewed
Data sources: Crossref
Digital.CSIC
Article . 2014 . Peer-reviewed
Data sources: Digital.CSIC
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Oxidised mercury determination from combustion gases using an ionic exchanger

Authors: Fuente Cuesta, Aida; Díaz Somoano, Mercedes; López Antón, María Antonia; Martínez Tarazona, María Rosa;

Oxidised mercury determination from combustion gases using an ionic exchanger

Abstract

[EN] Mercury displays a different reactivity and behaviour depending on its speciation. Determination of the mercury species present in combustion flue gases is important for proposing effective control technologies. The Ontario Hydro (OH) method is accepted as the only wet-chemical method suitable for measuring total and speciated mercury in flue gases. However, the continuous development of combustion technologies has the effect of modifying the operational variables and the composition of the resulting flue gases, leading to measurement biases in mercury determination. In this work, an alternative method based on the use of an ionic exchanger resin is proposed for the determination of gaseous oxidised mercury. The results show that for sampling flue gases containing reactive gases over long periods of time, the use of this resin is a suitable method for determining gaseous elemental and oxidised mercury, even in the presence of large amounts SO2 or NO2. Application of the OH method when elevated amounts of SO2 or NO2 are present in the gas composition leads to an overestimation of the amount of oxidised mercury due to the oxidation of the mercury in the KCl impinger solution. The financial support for this work was provided by the project CTM2011–22921. Peer reviewed

Country
Spain
Keywords

Speciation, Mercury, Exchange resin, Ontario-Hydro

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 21
    download downloads 57
  • 21
    views
    57
    downloads
    Data sourceViewsDownloads
    DIGITAL.CSIC2157
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
26
Top 10%
Top 10%
Top 10%
21
57
Green