
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Dynamic modelling, validation and analysis of coal-fired subcritical power plant

Coal-fired power plants are the main source of global electricity. As environmental regulations tighten, there is need to improve the design, operation and control of existing or new built coal-fired power plants. Modelling and simulation is identified as an economic, safe and reliable approach to reach this objective. In this study, a detailed dynamic model of a 500 MWe coal-fired subcritical power plant was developed using gPROMS based on first principles. Model validations were performed against actual plant measurements and the relative error was less than 5%. The model is able to predict plant performance reasonably from 70% load level to full load. Our analysis showed that implementing load changes through ramping introduces less process disturbances than step change. The model can be useful for providing operator training and for process troubleshooting among others.
- University of Hull United Kingdom
- University of Hull United Kingdom
Model validation, Specialist Research - Other, Drum boiler, 620, Coal-fired power plants, Dynamic modelling, Subcritical power plants
Model validation, Specialist Research - Other, Drum boiler, 620, Coal-fired power plants, Dynamic modelling, Subcritical power plants
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).74 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
