Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della ricer...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Integration of SNG plants with Carbon Capture and Storage Technologies modeling

Authors: BASSANO, Claudia; Deiana, Paolo; Pacetti, Lorenza; VERDONE, Nicola;

Integration of SNG plants with Carbon Capture and Storage Technologies modeling

Abstract

Abstract Several power plant configurations have been recently studied as an alternative to conventional technologies in the field of energetic conversion of coal. The price of natural gas shows a volatile trend and when at its maximum promotes a renewed interest in technologies converting coal into synthetic natural gas (SNG). Moreover, in an low-carbon economy these processes include the capture of CO 2 in the base plant configuration. This paper analyzes the possible integration of SNG plants with Carbon Capture and Storage Technologies (CCS). The studied SNG facilities are based on commercial coal gasification and methanation technologies currently available worldwide. The major problem in optimizing the methanation reaction, one of the most important stages of the whole process, is to achieve an efficient removal of the reaction heat to avoid catalyst sintering and prevent carbon particle formation. For this reason, in this study two different process configurations were compared. In the first configuration (case A), the removal of CO 2 is operated before the methanation section and the reaction is carried out in a series of adiabatic fixed bed reactors with inter-cooling and product recycle. In the second configuration (case B) the dilution of the methanation feed with CO 2 and steam controls the heat of reaction, being CO 2 captured downstream the process. For both the plant configurations, performance is analyzed and the energy penalty caused by the introduction of CCS is evaluated. Particular attention is devoted to heat integration between different sections of the plant. Results show similar efficiency in both the cases and that more than 50% of the input energy can be converted to synthetic natural gas. The CCS integration leads to a slight efficiency reduction of about 1 percentage point. The selected plant configurations were tested and performance evaluated and compared in the Aspen Plus v. 8 simulation environment.

Country
Italy
Keywords

carbon capture and storage; CO2; SNG; fuel technology; energy engineering and power technology; chemical engineering (all); organic chemistry

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Top 10%
Top 10%