
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Compression ignition and pollutant emissions of large alkylbenzenes

This study contributes to combustion research and fuel development by reporting the effect of the phenyl group in alkylbenzenes on combustion characteristics and exhaust gas emissions. The experiments were conducted in a single cylinder compression ignition engine. Three alkylbenzenes with long alkyl chains, three alkane/toluene mixtures and seven alkanes were tested. Additionally, three alcohols were tested to allow comparisons between the effects of a phenyl group and a hydroxyl group. It was found that both the phenyl group and the hydroxyl group have a significant effect on the ignition delay and the exhaust gas emissions. The rate of alkylbenzene combustion was lower than that of the corresponding alkane. Additionally, the phenyl groups in alkane/toluene mixtures had longer ignition delays than the corresponding alkylbenzene molecules. Adding a hydroxyl group to an alkane was observed to increase the ignition delay more than the addition of a phenyl group. It is suggested that these changes in ignition delay are mainly caused by the formation of relatively stable radicals in the combustion of compounds with a phenyl group. The presence of a phenyl group in the fuel molecule also increased the NOx emissions and the mass of particulate emissions in the exhaust gas compared to both alcohols and alkanes.
- BP (United Kingdom) United Kingdom
- Czech Academy of Sciences Czech Republic
- BP (United Kingdom) United Kingdom
- University College London United Kingdom
- Technology Centre Czech Republic
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).11 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
