Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ LAReferencia - Red F...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
CONICET Digital
Article . 2016
License: CC BY NC SA
Data sources: CONICET Digital
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Permittivity of biodiesel-rich blends with fossil diesel fuel: Application to biodiesel content estimation

Authors: Corach, Julián; Sorichetti, Patricio Aníbal; Romano, Silvia Daniela;

Permittivity of biodiesel-rich blends with fossil diesel fuel: Application to biodiesel content estimation

Abstract

Abstract The relative permittivity of biodiesel-rich blends, from pure biodiesel to 50% blends with diesel fossil fuel, were determined at temperatures between 303.0 K and 343.0 K (controlled within ±0.1 K). Measurements were made on biodiesel from soybean in the frequency range from 20 kHz to 2 MHz; the relative measurement uncertainty was below 0.3%. At each composition, experimental values fit very satisfactorily to a linear dependence on temperature. Similarly, at constant temperature, permittivity depends linearly on biodiesel content. From these results, a simple model was proposed to estimate the permittivity of the samples as a function of biodiesel content and temperature. The model parameters were determined from a multiple regression analysis. The RMS uncertainty of the fitting was below 0.7%, for blends with biodiesel concentration ⩾50%. The model was inverted to determine the biodiesel content from permittivity and temperature measurements. The parameters of the inverted model were checked by a multiple regression analysis and the RMS uncertainty of the content determination was below 1.5%. The results presented in this work show that dielectric measurements are a valuable tool for biodiesel content determination in rich-biodiesel blends from vegetable oils with diesel fossil fuel.

Country
Argentina
Keywords

Blend, Fame, https://purl.org/becyt/ford/2.4, Dielectric Spectroscopy, Permittivity, Biodiesel, Diesel, https://purl.org/becyt/ford/2

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Average
Top 10%
Green