
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Investigation of the effect of DC electric field on a small ethanol diffusion flame

A small ethanol diffusion flame exhibited interesting characteristics under a DC electric field. A numerical study has been performed to elucidate the experimental observations. The flow velocity, chemical reaction rate, species mass fraction distribution, flame deformation and temperature of the flame in the applied DC electric field were considered. The results show that the applied electric field changes the flame characteristics mainly due to the body forces acting on charged particles in the electric field. The charged particles are accelerated in the applied electric field, resulting in the flow velocity increase. The effects on the species distribution are also discussed. It was found that the applied electric field promotes the fuel/oxidizer mixing, thereby enhancing the combustion process and leading to higher flame temperature. Flame becomes shorter with applied electric field and its deformation is related to the electric field strength. The study showed that it is feasible to use an applied DC electric field to control combustion and flame in small-scale.
- South China University of Technology China (People's Republic of)
- Lancaster University United Kingdom
- South China University of Technology China (People's Republic of)
660
660
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).37 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
