Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Near infrared spectroscopy for the discrimination between different residues of the wood processing industry in the pellet sector

Authors: Mancini, M.; Rinnan, Åsmund; Pizzi, A.; Mengarelli, C.; Rossini, G.; Duca, D.; Toscano, G.;

Near infrared spectroscopy for the discrimination between different residues of the wood processing industry in the pellet sector

Abstract

Abstract The increasing concern regarding energy supply and the consequent rapid growth of the pellet market lead to the need to classify the product quality. To this aim, chemical-physical parameters and qualitative attributes are defined by the technical standards EN ISO 17,225 to classify the quality of biofuels, but, while the former can be determined by traditional chemical analysis, no methodologies have been set for the latter one. Hence, near-infrared spectroscopy was tested to obtain information about the origin and the source of the pellet, at the moment only declared by the producers and difficult to be achieved by conventional analysis. In fact, the great strength of the technique is based on the fact that biomass features could be read simultaneously with a rapid and cheap NIR measurement. Checking the presence of treated wood (e.g. residues from wood processing industry) especially in densified products, such as pellets and briquettes, is particular important since in several European countries, e.g. Italy, these materials are considered as waste. In this study more than a hundred samples of virgin and treated wood (residues from wood processing industries) were analysed by means of FT-NIR. Partial Least Square regression – Discriminant Analysis was used in order to classify samples between the two classes and different variables selection methods were tested in order to improve the classification performance of the models. The results obtained demonstrated that near infrared analysis coupled with multivariate analysis can be used in screening applications to classify virgin wood from glue-laminated wood and treated wood. In particular, the model for the discrimination of treated wood (except glue-laminated samples) from virgin wood performs 100% correct classification and the model for the discrimination between virgin wood and glue-laminated wood only has a 3.6% misclassification rate. The methodology can be considered as the first one able to provide information about the origin of the biomass in a rapid and cheap way.

Country
Denmark
Keywords

Wood composite, Quality control, Traceability, PLS-DA, Variables selection

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Top 10%
Top 10%