Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Quantitative analysis on the effects of compression ratio and operating parameters on the thermodynamic performance of spark ignition liquefied methane gas engine at lean burn mode

Authors: Jun Shu; Jingping Liu; Feng Zhou; Banglin Deng; Jianqin Fu; Lianhua Zhong;

Quantitative analysis on the effects of compression ratio and operating parameters on the thermodynamic performance of spark ignition liquefied methane gas engine at lean burn mode

Abstract

Abstract In this study, a thermodynamic analysis for the liquefied methane gas (LMG) engine with the variation of compression ratio (CR) was conducted through theoretical and experimental investigations. Firstly, the equations for thermodynamic cycle efficiency were further corrected based on the previous studies, in which the losses due to heat release rate (HRR), exhaust valve opening (EVO) timing, specific heat ratio, incomplete combustion and heat transfer were considered. Then, the sweeping test of CR was conducted on an LMG engine. On this basis, the thermodynamic cycle process was studied and various kinds of energy losses were analyzed. The results show that the improvement of indicated thermal efficiency by increasing CR mainly depends on engine operating conditions, the maximum of which occurs at high load and is close to the theoretical value (4.2 percent points). The actual cycle efficiency of LMG engine is mainly influenced by the specific heat ratio of medium gas, followed by the heat transfer loss and the effective expansion ratio (EER) loss. Compared with combustion duration, the combustion phase plays a much more important role in EER loss. All these have provided theoretical basis and direction for the improvement of actual thermal efficiency of LMG engine.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%