Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Queensland Universit...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Fuel
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Engine performance and emissions of high nitrogen-containing fuels

Authors: Thuy Chu Van; Thuy Chu Van; Eva Johanna Horchler; Timothy A. Bodisco; Yi Guo; Thomas J. Rainey; Puneet Verma; +4 Authors

Engine performance and emissions of high nitrogen-containing fuels

Abstract

Nitrogen (N) content in algae hydrothermal liquefaction (HTL) biocrude is high (5–8 wt%) and generally presumed to result in high NOx emissions during combustion. However, to our knowledge a very limited previous work on diesel engine performance and emissions of N-containing fuels. In order to investigate this issue, pyridine, an N-heterocyclic compound commonly found in algae biocrude, was blended with diesel fuel. This study investigated the influence of N in fuels, using a surrogate fuel to simulate algal biocrude, to determine the combustion behavior and emissions profile of an industrial multi-cylinder diesel engine. The presence of N in the fuel affected its physical properties. Density was slightly higher than neat diesel, while the viscosity, the flash point and the higher heating value (HHV) of the N-containing fuels reduced with increasing N content. The flash point of N-containing fuels were reduced, which affects the storage and transportation of the fuel. The engine load between 25 and 75% was observed to have an effect on engine performance parameters. Compared to diesel, N-containing fuels emitted both lower carbon monoxide (CO) and unburned hydrocarbons (HC). Increasing nitrogen oxides (NOx) emissions were observed with increasing N content in the fuels. At 50% and 75% loads, NOx emissions from N0.1 (0.1 wt% N), N0.5 (0.5 wt% N) and N2 (2 wt% N) were lower than for EUROIII. Particulate matter (PM) was lower for N-containing fuels compared to diesel fuel except for N0.1.

Country
Australia
Keywords

660, Nitrogen, engine emissions, Engine performance, algae HTL biocrude, surrogate fuel

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
Green
hybrid