Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CONICET Digitalarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CONICET Digital
Article . 2021
License: CC BY NC ND
Data sources: CONICET Digital
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

REVIEW: Models for predicting viscosities of biodiesel fuels over extended ranges of temperature and pressure

Authors: Ferreira, Abel G.M.; Talavera Prieto, Nieves María del Carmen; Portugal, António A.; Moreira, Rui J.;

REVIEW: Models for predicting viscosities of biodiesel fuels over extended ranges of temperature and pressure

Abstract

Abstract Fuel viscosity is an important property that has a significant effect in fuel injection, spray development and combustion in Compression Ignition (CI) engines. Current and future injector designs of diesel engines (such as rail injection systems) work at high pressures (>100 MPa), meaning that fuel viscosity increases substantially over the atmospheric values. The estimation of biodiesel (BD) viscosity based on the knowledge of its composition would be of great potential in the optimization of biodiesel production processes, particularly in the blending of raw materials and refined products. In this work, comprehensive data sets were chosen from literature regarding several BD classes, in order to establish new correlations and new predictive methods of viscosity. The proposed methodologies were validated using available viscosity data of BDs having different chemical compositions in wide ranges of temperature and pressure. The new methods developed at atmospheric pressure for predicting BD viscosity were found to have better predictive ability than those commonly used in literature. In particular, the models developed with the Lewis and Squires equation fitted to biodiesel feedstock (LSDB model) and the same equation using the predicted degree of unsaturation (DU) (LSDU1 model) presented a very good performance with average relative deviation (ARD)

Country
Argentina
Keywords

PRESSURE, VISCOSITY PREDICTION MODEL, BIODIESEL, https://purl.org/becyt/ford/1.3, https://purl.org/becyt/ford/1, TEMPERATURE, VISCOSITY

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%