
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Heterogeneous reaction of N2O and formation of NO with coal char in the simulated air-staged combustion atmosphere of pulverized coal at high temperature

Abstract In order to further investigate the second rise phenomenon of NO in pulverized coal boilers, the simulated air-staged combustion atmosphere was used in a high temperature fixed bed reactor to study the heterogeneous reduction mechanism of N2O and NO formation. The results show that proper conditions can converse N2O to a large amount of NO. The reduction ability of char to NO produced by N2O in different atmospheres is not much different, but it will be greatly reduced at high temperature, indicating that the ability of char to prevent the second rise of NO is limited. In the oxidizing atmosphere, three reaction paths of N2O heterogeneous reduction were verified through the reduction of N2O by char under different oxygen concentrations. Low O2 concentration at low temperature improves the char’s reducing capacity, while at high temperature it enhances the oxidation capacity of O2, promoting the oxidation consumption of char. The coexistence of iodine and char will reduce the effect of iodine on inhibiting the formation of NO, as well as char’s reducing capacity. The iodine can promote the decomposition of N2O and inhibit the adsorption of N and O on the char surface.
- Shanghai Jiao Tong University China (People's Republic of)
- Shanghai Jiao Tong University China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).14 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
