Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparative evaluation of intelligent regression algorithms for performance and emissions prediction of a hydrogen-enriched Wankel engine

Authors: Changwei Ji; Changwei Ji; Huaiyu Wang; Shuofeng Wang; Cheng Shi; Jinxin Yang; Yunshan Ge;

Comparative evaluation of intelligent regression algorithms for performance and emissions prediction of a hydrogen-enriched Wankel engine

Abstract

Abstract In order to satisfy the heightened emissions regulation and further enhance the performance of the engine, efforts on amelioration of the engine management system are of great significance besides using intelligent regression algorithms. Based on a hydrogen-enriched Wankel rotary engine, multiple engine operations with variable excess air ratios, variable ignition timing, and variable hydrogen enrichment have been carried out a series of engine calibration tests in detail. After recording the required experimental data, three different methods, including quadratic polynomial, artificial neural networks (ANN), and support vector machine (SVM) are applied to construct a multi-objective regression model which gives a unique insight into the mathematical relationship between the engine performance and the operation and control parameters. For the ANN, the effect of the number of nodes in the hidden layer on the regression performance was discussed, and the weight values of the ANN was optimized using a genetic algorithm. For the SVM, the effects of the kernel function and three optimization methods on regression performance were discussed. The results indicated that the SVM exhibited the best fitting results among the three methods. The optimal R2 for brake thermal efficiency, fuel energy flow rate, nitrogen oxide, carbon monoxide, and unburned hydrocarbon is 0.9877, 0.9840, 0.9949, 0.9937, and 0.9992, respectively. It is highly recommended that the SVM method as a generic methodology may be a new direction for nonlinear control system modeling of the Wankel engine.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Top 10%
Top 1%