Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effect of nitrogen and hydrogen addition on performance and emissions in reactivity controlled compression ignition

Authors: İPCİ, DUYGU; SOLMAZ, HAMİT; CALAM, ALPER; Bahrami, Sohayb; Poorghasemi, Kamran;

Effect of nitrogen and hydrogen addition on performance and emissions in reactivity controlled compression ignition

Abstract

Abstract Compression ignition engines have always been attractive due to high thermal efficiency. Advanced combustion modes have been developed for internal combustion engines to reduce both harmful emissions and fuel consumption. One of these technologies is the reactivity controlled compression ignition (RCCI) mode. Mixture formation in the RCCI engine is provided by a low reactivity fuel injection (port fuel injection) during the intake stroke and stratified high reactivity fuel injection into the cylinder (direct injection) during the compression stroke. In the present study, the effect of reforming gases on RCCI combustion was investigated numerically. The RCCI experimental data were obtained from a previous study performed on a 1.9-liter GM brand gasoline engine fueled with gasoline/diesel fuels. The simulation was performed via Converge Computational Fluid Dynamics (CFD) code, and numerical results were validated with the experimental data. The maximum in-cylinder pressure was recorded as 6.84 MPa with nitrogen addition. It is reached up to 15.12 MPa in case of using hydrogen and nitrogen together. Soot production reached a maximum level of 8.5 × 10 - 3 g/kg-fuel with 72% nitrogen addition. However, soot pollutants were reduced via 4% hydrogen substitution and recorded as 2.3 × 10 - 5 g/kg-fuel. While the in-cylinder gas temperature was 1295 K with 72% nitrogen, it reached 3578.5 K with hydrogen addition.

Country
Turkey
Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Top 10%
Top 1%