Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Fuelarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Fuel
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Review of the backfire occurrences and control strategies for port hydrogen injection internal combustion engines

Authors: Xiaochen Wang; Guohong Tian; Jianbing Gao; Jianbing Gao; Chaochen Ma; Panpan Song;

Review of the backfire occurrences and control strategies for port hydrogen injection internal combustion engines

Abstract

Abstract Hydrogen fuel applications in internal combustion engines have attracted increasing attention due to zero carbon emission and excellent combustion characteristics in terms of thermal efficiency. Internal combustion engines fuelled with hydrogen are demonstrated to have higher brake thermal efficiency than other fossil fuel cases. However, abnormal combustion such as backfire in port hydrogen injection engines limits the improvement of internal combustion engine performance resulting from low ignition energy and high flame propagation velocity of hydrogen fuel. Volumetric efficiency drops significantly if backfire occurs; moreover, it brings about damages to the intake systems and fuel injection systems. Backfire is induced by high temperature residual exhaust gas, hot spots, and abnormal discharge of spark plugs; all the factors causing pre-ignition of hydrogen-air mixture promote the backfire occurrences. This paper reviews the factors tending to induce backfire, such as improper intake valve timing and fuel injection timing, and high fuel-air equivalence ratios; additionally, the corresponding backfire control strategies are analyzed with advantages and disadvantages being discussed. The factors leading to backfire are mainly caused by large amounts of residual exhaust gas, extremely slow combustion, and improper hydrogen distributions around intake valve seats. Backfire control strategies have specific application conditions to ensure their effectiveness, beyond which they will generate negative impacts on backfire control effectiveness. Power loss is nearly inevitable for naturally aspirated engines when backfire control strategies are adopted. Multiple control strategies are recommended to ease the engine performance drop caused by backfire control; meantime, multi-objective optimizations are suggested to achieve the optimal global performance.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    206
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
206
Top 1%
Top 10%
Top 0.1%
bronze