Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Particulate matter emission during municipal solid waste combustion: Submicron particulates formation mechanism

Authors: Lushi Sun; Wei Li; Wei Li; Deepak Pudasainee; Rajender Gupta; Ben Wang; Wu Yang; +1 Authors

Particulate matter emission during municipal solid waste combustion: Submicron particulates formation mechanism

Abstract

Abstract This paper presents an information on size distribution, inorganic composition and formation mechanism of submicron particles generated from MSW combustion. The XRD and CCSEM analysis results clearly showed that NaCl, KCl, K3Na(SO4)2, and SiO2 are the major inorganic mineral components in submicron particles. Submicron particles are mainly composed of organic components, alkali chlorides, alkali sulfates, and refractory inorganic minerals, but they account for different proportions in PM0.2 and PM0.2-1. There are five formation modes of submicron particles in MSW combustion: “condensation”, “nucleation”, “accumulation”, “crystallization” and “fragmentation”. The “condensation” mechanism mainly seen in PM0.2 composed of gas components, the “crystallization” and “fragmentation” modes formed by alkali salts and char particles are mainly present in PM0.2-1, the “nucleation” and “accumulation” modes coexist in PM0.2 and PM0.2-1. As the combustion temperature increased, the alkali chlorides and sulfates in the “crystallization” form decreased, and the inorganic mineral components in the “nucleation” form increased, which results in the variation of size distribution of submicron particles. In addition, volatile alkali salt nucleation experiments show that when alkali chloride and sulfate coexist in high-temperature flue gas, heterogeneous nucleation and agglomeration can significantly enhance the accumulation of particles in the range of 0.2–0.5 μm.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Top 10%