Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CNR ExploRA
Article . 2023
Data sources: CNR ExploRA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel
Article . 2023 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mineral effects on chemical and physical transformations of fast pyrolysis products of cellulose-based model fuels in N2 and CO2

Authors: Eckhard Till; Pflieger Christin; Russo Carmela; Freisewinkel Erik; Eisenbach Tim; Böttger; Jannik; +6 Authors

Mineral effects on chemical and physical transformations of fast pyrolysis products of cellulose-based model fuels in N2 and CO2

Abstract

This paper investigates the changes in reactivity and physicochemical characteristics of char and tar produced from severe heat treatment in either inert or CO2-rich atmospheres of a synthetic fuel doped with Fe&Mg and K&Mg sulfates. The mineral-free model fuel was obtained by hydrothermal carbonization (HTC) of cellulose. The comparison of Py-GC/MS-GC/TCD, heated strip reactor (HSR), and drop tube reactor (DTR) results highlighted that mineral doping, heating rate, temperature, residence time and atmosphere all interacted and influenced the pyrolysis products. Fe&Mg increased the light permanent gases during flash pyrolysis. The minerals catalytically affected the decomposition of the levoglucosan fraction in the tars. In N2, the addition of K&Mg influenced the oxy-aliphatic tars, while Fe&Mg had a stronger impact on oxy-aromatic compounds. Depending on the pyrolysis temperature and residence time (and reactor type), CO2 inhibited (700 °C in the HSR) or enhanced (1027 °C in the DTR) the formation of polycyclic aromatic hydrocarbon (PAHs) in the tars. Chars doped with Fe&Mg always exhibited higher reactivity than the chars doped with K&Mg. While the presence of CO2 during pyrolysis favored the aromatization of the chars especially in combination with doped minerals, alkali mineral interaction with CO2 decisively altered char reactivity.

Keywords

Catalytic effect, Mineral transformation, Biomass, Fast pyrolysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%