Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuel Processing Tech...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel Processing Technology
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel Processing Technology
Article . 2016 . Peer-reviewed
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evaluation of the Wheeler-Jonas parameters for biogas trace compounds removal with activated carbons

Authors: Davide Papurello; Luca Tomasi; Silvia Silvestri; Massimo Santarelli;

Evaluation of the Wheeler-Jonas parameters for biogas trace compounds removal with activated carbons

Abstract

A practical and feasible solution to reduce the global impacts from fossil fuels is represented by the locally distributed micro-cogeneration systems with high temperature solid oxide fuel cells (SOFC) fed by biogenous fuel coupled in an energy distributed system. One of the main drawback is the low tolerability towards certain fuel impurities, mostly sulfur, chlorine and siloxane compounds. The opportunity to predict the breakthrough time of a gas cleaning section with a high precision level is mandatory to meet SOFC requirements. The reaction kinetic equation called the Wheeler-Jonas equation is adopted to estimate this breakthrough time. Two different commercial activated carbons were studied estimating the breakthrough time varying the operating temperature, the pollutant concentration (single and multiple effects) and the relative humidity. Results showed how relative humidity content affects inversely the removal performance for both sorbents. The Carbox sample, below RH 20% showed interesting results due to its metals content and microstructure. Here, relative humidity promoted the best condition to remove organic vapors from the biogas stream. Multiple contaminant conditions for both sorbent materials decreased the removal performance (tb). This decreasing for the Carbox sample ranged from a minimum of 44% to a maximum of 50% for H2S, and 70% for HCl with wet and dry conditions respectively.

Country
Italy
Keywords

Settore ING-IND/09 - SISTEMI PER L'ENERGIA E L'AMBIENTE, Biogas, Solid Oxide Fuel Cell (SOFC), Wheeler-Jonas equation, Carbon, Adsorption, VOCs removal

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Top 10%
Top 10%
Green
gold