
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Quantitative compositional analysis of Estonian shale oil using comprehensive two dimensional gas chromatography

Quantitative compositional analysis of Estonian shale oil using comprehensive two dimensional gas chromatography
Abstract An Estonian pyrolysis shale oil has been characterized using comprehensive two dimensional gas chromatography (GC × GC) coupled to a flame ionization detector (FID) and time of flight mass spectrometer (TOF-MS). Oxygen containing compounds were abundant and the following classes were identified: benzenediols, hydroxybenzofurans, phenols, ketones, and naphthols. The large peak overlap observed for oxygenates with the hydrocarbon matrix using a non-polar × polar column combination made identification and quantification difficult. A methodology based on the more selective separation using a polar × non-polar and polar × mid-polar column configurations was developed and tested. The obtained bidimensional resolution confirms that the method provides an improved separation of unsaturated hydrocarbons, mid-polar and even highly polar oxygen containing compounds. The use of an internal standard methodology allowed complete quantification of the pyrolysis shale oil both by carbon number and chemical class.
- Ghent University Belgium
- Tallinn University of Technology Estonia
8 Research products, page 1 of 1
- 2016IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
- 2014IsAmongTopNSimilarDocuments
- 2011IsAmongTopNSimilarDocuments
- 2010IsAmongTopNSimilarDocuments
- 2009IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).30 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
