Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuel Processing Tech...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel Processing Technology
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Bio-oil production by lignocellulose fast-pyrolysis: Isolating and comparing the effects of indigenous versus external catalysts

Authors: Sergio Jiménez-Sánchez; Héctor Hernando; Eleni Heracleous; David P. Serrano; David P. Serrano; Patricia Pizarro; Patricia Pizarro; +3 Authors

Bio-oil production by lignocellulose fast-pyrolysis: Isolating and comparing the effects of indigenous versus external catalysts

Abstract

Abstract The effect of both indigenous (mineral components) and external (HZSM-5 zeolite) catalysts on bio-oil production by biomass fast-pyrolysis has being isolated and compared for two herbaceous and two woody biomass samples. Thereby, a variety of lignocellulosic biomasses (in both raw and de-ashed forms) have been subjected to fast-pyrolysis tests. Mineral components present in the raw biomasses were removed by an acid-washing treatment. The results obtained showed that both types of catalysts decreased the bio-oil* yield (water-free basis). However, whereas the indigenous catalysts almost did not affect the bio-oil* oxygen content, this parameter was significantly reduced when using the HZSM-5 zeolite. This finding denotes that mineral components are not really effective for bio-oil deoxygenation since they mainly promote the formation of additional char, which retains about 40% of the chemical energy contained in the raw biomass. In contrast, the external catalyst does favour oxygen removal from the bio-oil. Likewise, the deoxygenation route was strongly dependent on the type of catalyst. In the non-catalytic process dehydration was predominant, the indigenous catalysts favoured decarboxylation, whereas for the external HZSM-5 catalyst decarbonylation became the major deoxygenation pathway. Regarding the bio-oil* composition, both indigenous and external catalysts promoted the conversion of sugars and the formation of carboxylic acids, aldehydes and oxygenated aromatics. However, aromatic hydrocarbons were only produced over the external HZSM-5 catalyst, with a high proportion of alkyl-substituted benzenes and naphthalenes.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    51
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
51
Top 10%
Top 10%
Top 10%
gold