
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Bio-oil production by lignocellulose fast-pyrolysis: Isolating and comparing the effects of indigenous versus external catalysts

Abstract The effect of both indigenous (mineral components) and external (HZSM-5 zeolite) catalysts on bio-oil production by biomass fast-pyrolysis has being isolated and compared for two herbaceous and two woody biomass samples. Thereby, a variety of lignocellulosic biomasses (in both raw and de-ashed forms) have been subjected to fast-pyrolysis tests. Mineral components present in the raw biomasses were removed by an acid-washing treatment. The results obtained showed that both types of catalysts decreased the bio-oil* yield (water-free basis). However, whereas the indigenous catalysts almost did not affect the bio-oil* oxygen content, this parameter was significantly reduced when using the HZSM-5 zeolite. This finding denotes that mineral components are not really effective for bio-oil deoxygenation since they mainly promote the formation of additional char, which retains about 40% of the chemical energy contained in the raw biomass. In contrast, the external catalyst does favour oxygen removal from the bio-oil. Likewise, the deoxygenation route was strongly dependent on the type of catalyst. In the non-catalytic process dehydration was predominant, the indigenous catalysts favoured decarboxylation, whereas for the external HZSM-5 catalyst decarbonylation became the major deoxygenation pathway. Regarding the bio-oil* composition, both indigenous and external catalysts promoted the conversion of sugars and the formation of carboxylic acids, aldehydes and oxygenated aromatics. However, aromatic hydrocarbons were only produced over the external HZSM-5 catalyst, with a high proportion of alkyl-substituted benzenes and naphthalenes.
- International Hellenic University Greece
- Energy Institute United Kingdom
- IMDEA Energy Institute Spain
- International Hellenic University Greece
- King Juan Carlos University Spain
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).51 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
