Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuel Processing Tech...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel Processing Technology
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Impact of micro-explosive atomization of fuel droplets on relative performance indicators of their combustion

Authors: Galina S. Nyashina; Pavel A. Strizhak; K. Yu. Vershinina;

Impact of micro-explosive atomization of fuel droplets on relative performance indicators of their combustion

Abstract

Abstract The idea of producing water-containing slurries and emulsions based on Diesel fuel, oil, coal, and coal processing waste has spread around the world. One of the ways to make the combustion of such fuels more efficient is through the micro-explosive droplet breakup, that is, the secondary atomization directly in the car combustion chambers and furnaces of boiler units. Here we study experimentally how micro-explosion affects the energy-related and environmental parameters of the combustion of slurry fuel droplets based on coal and its processing wastes. We present the results of experiments determining the threshold temperatures and ignition delay times, dimensions of the flame cloud of the dispersing particles, and anthropogenic emissions. The results obtained indicate that the micro-explosive atomization of fuel droplets can improve the environmental performance by up to 40%. The comprehensive analysis of the prospects of using coal-water slurries containing petrochemicals instead of coal has shown that the relative performance indicator of slurry fuel is 1.7–3.3 times higher than that of coal. With varying values of weight coefficients (environment, energy, and cost), the dimensionless slurry fuel performance coefficient may increase by 3–30% as compared to the case of equal values for these coefficients.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Top 1%
Top 10%
Top 1%
gold