
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Evaluating smart grid renewable energy accommodation capability with uncertain generation using deep reinforcement learning

Abstract Due to environment-friendliness, renewable energy like solar power and wind power is more and more introduced to energy systems all over the world. Simultaneously, high penetrations of wind and solar generation also have brought severe curtailment of wind and solar. How to alleviate curtailment of wind and solar is a crucial problem in evaluating accommodation capability of renewable energy, which reflects the extent of utilization of renewable energy and economic benefits. The uncertainty of renewable energy brings challenges to precisely describe renewable generation, which leads to difficulty in designing effective mechanisms for accommodation capability of renewable energy. Existing work suffers from high computation overhead from frequently updated data, and low precision of describing renewable energy, which leads to less effective policies for renewable energy accommodation and underestimated accommodation capability. To make the most of renewable energy, an algorithm AccCap-DRL based on deep reinforcement learning is proposed. AccCap-DRL partitions a distribution into segments by time intervals, employs WGAN to describe distributions of renewable energy data, and employs DDPG to obtain approximate policies for renewable energy accommodation in different scenarios. Simulation results from real power generation and users’ demand data show high effectiveness of the proposed algorithm, and high efficiency of evaluating accommodation capability.
- King Saud University Saudi Arabia
- Heilongjiang University China (People's Republic of)
- Heilongjiang University China (People's Republic of)
- Mudanjiang Normal University China (People's Republic of)
- King Saud University Saudi Arabia
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).33 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
