Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRIS Cnrarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Global Ecology and Conservation
Article . 2022 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Global Ecology and Conservation
Article . 2022
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Nesting range expansion of loggerhead turtles in the Mediterranean: Phenology, spatial distribution, and conservation implications

Authors: Hochscheid, Sandra; Maffucci, Fulvio; Abella, Elena; Bradai, Mohamed Nejmeddine; Camedda, Andrea; Carreras, Carlos; Claro, Françoise; +9 Authors

Nesting range expansion of loggerhead turtles in the Mediterranean: Phenology, spatial distribution, and conservation implications

Abstract

Global warming is affecting habitat quality and availability on our planet and some species are predicted or are by now changing their distribution range. Here we show that loggerhead turtles have already started to expand their nesting range into the Western Mediterranean, which has until recently hosted only sporadic nests. We compiled information on nesting activity from beaches surrounding the Western Mediterranean and collected metadata on loggerhead turtle nests in Spain, France, Italy, and Tunisia between 2010 and 2020 to provide an exhaustive overview on the phenomenon of emerging new nest sites for loggerhead turtles. The number of recorded nests has increased drastically since 2013 from 1 to 3 nests/year to a record number of 84 registered in 2020. While this increase may partly be explained by grown awareness and reporting by citizens, there is no doubt of an upward trend in nesting activity. The nests are unevenly distributed over the study area with most nests occurring on the coasts of the warmer Tyrrhenian Sea. A hotspot analysis identified beaches in SW Italy, SE Sardinia, and NW Tunisia with statistically significant clustering of nests. Within these hotspots, three beaches in SW Italy and one in Tunisia had nests at least four out of the five last years. Nesting phenology corresponds to that of Eastern Mediterranean rookeries, and mean hatching success of naturally incubating, non-manipulated nests was 66 %, although there was variability across the region. Mean incubation durations also varied between countries indicating a diversity in inferred sex ratios, with sufficient female production to foster future colonisation of this region. Unfortunately, these beaches are already under high tourist pressure and subject to intense coastal development, imposing many threats to the females, eggs, and hatchlings. Thus, while this study reveals the unique opportunity to witness and study an ongoing new colonisation process in loggerhead turtles, it also calls for urgent proactive conservation actions to mitigate these threats and allow the turtles to establish new rookeries.

Countries
Spain, Italy
Keywords

Ecology, Anthropogenic threats, Loggerhead sea turtle, Reproductive phenology, Climate change, Climatic change, Range expansion, Loggerhead sea turtle, Reproductive phenology, Climate change, Canvi climàtic, Nest site selection, Sea turtles, QH540-549.5, Tortugues marines

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 108
    download downloads 99
  • 108
    views
    99
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
30
Top 10%
Top 10%
Top 10%
108
99
Green
gold
Related to Research communities
Energy Research