Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Green Energy & E...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Green Energy & Environment
Article . 2020 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Green Energy & Environment
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Green Energy & Environment
Article . 2020
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Boron carbide boosted Fenton-like oxidation: A novel Fe(III)/Fe(II) circulation

Authors: Xiaoguang Duan; Yangyang Yang; Gang Nie; Kunsheng Hu; Peng Zhou; Peng Zhou; Feng Cheng; +2 Authors

Boron carbide boosted Fenton-like oxidation: A novel Fe(III)/Fe(II) circulation

Abstract

The sluggish kinetics of Fe(Ⅱ) recovery in Fenton/Fenton-like reactions significantly limits the oxidation efficiency. In this study, we for the first time use boron carbide (BC) as a green and stable promotor to enhance the reaction of Fe(Ⅲ)/H2O2 for degradation of diverse organic pollutants. Electron paramagnetic resonance analysis and chemical quenching/capturing experiments demonstrate that hydroxyl radicals (•OH) are the primary reactive species in the BC/Fe(Ⅲ)/H2O2 system. In situ electrochemical analysis indicates that BC remarkably boosts the Fe(Ⅲ)/Fe(Ⅱ) redox cycles, where the adsorbed Fe(Ⅲ) cations were transformed to more active Fe(Ⅲ) species with a higher oxidative potential to react with H2O2 to produce Fe(Ⅱ). Thus, the recovery of Fe(Ⅱ) from Fe(Ⅲ) is facilitated over BC surface, which enhances •OH generation via Fenton reactions. Moreover, BC exhibits outstanding reusability and stability in successive cycles and avoids the secondary pollution caused by conventional organic and metalliferous promotors. Therefore, metal-free BC boosting Fe(Ⅲ)/H2O2 oxidation of organics provides a green and advanced strategy for water decontamination.

Related Organizations
Keywords

Sulfamethoxazole, Ecology, TJ807-830, Renewable energy sources, Metal-free catalysis, Boron carbide, Fenton-like reaction, QH540-549.5, Hydroxyl radical

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Top 10%
Top 10%
gold