Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geodermaarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Geoderma
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Geoderma
Article . 2023
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Theses@asb
Article . 2023
Data sources: Theses@asb
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mapping peat depth using a portable gamma-ray sensor and terrain attributes

Authors: Triven Koganti; Diana Vigah Adetsu; John Triantafilis; Mogens H. Greve; Amélie Marie Beucher;

Mapping peat depth using a portable gamma-ray sensor and terrain attributes

Abstract

Pristine peatlands being excellent storage for terrestrial Carbon (C) play a crucial role in regulating climate and water and provide several important ecosystem services. However, peatlands have been heavily altered (e.g., by draining the water table), increasing greenhouse gas (GHG) emissions. Restoring peatlands requires a comprehensive characterization, including knowledge of peat depth (PD; m). Traditionally, this requires the physical insertion of a push probe, which is time-consuming and labor-intensive. It has been shown that non-invasive proximal sensing techniques such as electromagnetic induction and ground penetrating radar can add value to PD data. In this research, we want to assess the potential of proximally sensed gamma-ray (γ-ray) spectrometry (i.e., potassium [K], thorium [Th], uranium [U], and the count rate [CR]) and terrain attributes data (i.e., elevation, slope, SAGAWI, and MRVBF) to map PD either alone or in combination across a small (10 ha) peatland area in ØBakker, Denmark. Here, the PD varies from 0.1 m in the south to 7.3 m in the north. We use various prediction models including ordinary kriging (OK) of PD, linear regression (LR), multiple LR (MLR), LR kriging (LRK), MLR kriging (MLRK) and empirical Bayesian kriging regression (EBKR). We also determine the minimum calibration sample size required by decreasing sample size in decrements (i.e., n = 100, 90, 80,…, 30). We compare these approaches using prediction agreement (Lin’s concordance correlation coefficient; LCCC) and accuracy (root mean square error; RMSE). The results show that OK using maximum calibration size (n = 108) had near perfect agreement (0.97) and accuracy (0.59 m), compared to LR (ln CR; 0.65 and 0.78 m, respectively) and MLR (ln K, Th, CR and elevation; 0.85 and 0.63 m). Improvements are achieved by adding residuals; LRK (0.95 and 0.71 m) and MLRK (0.96 and 0.51 m). The best results were obtained using EBKR (0.97 and 0.63 m) given all predictions were positive and no significant change in agreement and standard errors with the decrement of calibration sample size (e.g., n = 30). The results have implications towards C stocks assessment and improved land use planning to control GHG emissions and slow down global warming.

Country
Denmark
Related Organizations
Keywords

Proximal soil sensing, Science, Peat thickness, Q, Soil carbon, Digital soil mapping, Climate change

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
Green
gold