Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Geothermicsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Geothermics
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Geothermics
Article . 2019
Data sources: VIRTA
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An artificial intelligence approach for thermodynamic modeling of geothermal based-organic Rankine cycle equipped with solar system

Authors: Syri, Sanna; Zhao, Xiaowei; El Haj Assad; Mamdouh; Khosravi, Ali;

An artificial intelligence approach for thermodynamic modeling of geothermal based-organic Rankine cycle equipped with solar system

Abstract

Abstract Geothermal energy is a renewable resource that is constantly available. The low geothermal well operating lifetime is the main challenge in using this type of renewable energy. This problem can be covered by the aid of solar system (hybrid system). For complicated renewable energy systems, finding the optimum design parameters and operating conditions require to develop experimental apparatus or sophisticated thermodynamic models. Hence, in this study, artificial intelligence (AI) approach is proposed for modeling the geothermal organic Rankin cycle (GORC) equipped with solar thermal unit. Indeed, the current study depicts how AI methods can meticulously simulate the operation of a complicated renewable energy system. The developed intelligent methods are adaptive neuro-fuzzy inference system (ANFIS) optimized with particle swarm optimization (PSO) algorithm (ANFIS-PSO) and multilayer perceptron (MLP) neural network optimized with PSO algorithm (MLP-PSO). The models are composed based on the main design parameters of the geothermal system that are solar radiation, well temperature, working fluid mass flow rate, turbine output pressure, surface area of the solar collector and preheater inlet pressure. The intelligent models use the mentioned input variables to predict the net power output, energy efficiency, exergy efficiency and levelized cost of energy (LCOE) of the GORC. Energy, exergy and economic analyses are carried out for the low global warming potential (GWP) refrigerants. It was found out that although the intelligent models can meticulously predict the targets, ANFIS-PSO performs better than MLP-PSO for modeling the GORC with solar system. Root mean square error of this model for prediction of power generation, energy efficiency, exergy efficiency and LCOE was 12.023 (kW), 3.587 × 10 - 4 , 3.278 × 10 - 4 and 1.332 × 10 - 4 , respectively.

Related Organizations
Keywords

ta222, Adaptive neuro-fuzzy inference system, Particle swarm optimization, Multilayer neural network, Solar thermal collector, Geothermal organic Rankine cycle

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    57
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
57
Top 1%
Top 10%
Top 1%