Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CONICET Digitalarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CONICET Digital
Article . 2021
License: CC BY NC SA
Data sources: CONICET Digital
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Global and Planetary Change
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Permo-Triassic tetrapods and their climate implications

Authors: Jun Liu; Jun Liu; Kenneth D. Angielczyk; Kenneth D. Angielczyk; Fernando Abdala; Fernando Abdala;

Permo-Triassic tetrapods and their climate implications

Abstract

Abstract The narrow active temperature ranges of ectothermic tetrapods can be used as proxies for reconstructing paleoclimates. Here we deduce the climatic preferences of major Permo-Triassic tetrapod groups based on their known geographic distributions, the critical thermal limits of living tetrapods, and paleoclimate information from other sources. The resulting preferred temperature sequence of amniotes places most Triassic archosauromorphs at the high end of the spectrum, with preferred temperatures over 32 °C in some cases, followed by captorhinids, pareiasaurs, procolophonids, cynognathian cynodonts, dicynodonts (excluding Lystrosaurus), Proterosuchus fergusi, and finally Lystrosaurus at the lowest preferred temperature. The poleward distribution of Permian Lystrosaurus marks the border of cool temperate climates, whereas Triassic Lystrosaurus delineates the border of the arid zone. Most temnospondyls indicate the availability of perennial water sources. Captorhinids and pareiasaurs preferred dry climates, whereas dicynodonts preferred wetter conditions. Based on current evidence, central Pangea transitioned from an arid zone to a tropical zone during the late Olenekian.

Country
Argentina
Keywords

CLIMATE CHANGE, LOPINGIAN, TETRAPODA, https://purl.org/becyt/ford/1.5, EARLY TRIASSIC, https://purl.org/becyt/ford/1, LYSTROSAURUS, TEMPERATURE, BIOGEOGRAPHY

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%