
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Alkali baking and solvometallurgical leaching of NdFeB magnets

Alkali baking and solvometallurgical leaching of NdFeB magnets
Abstract End-of-life NdFeB magnets are an important secondary source of rare-earth elements (REEs) and cobalt. Recycling of these magnets can also mitigate the supply problems of its constituent critical REEs (mainly neodymium and dysprosium). The recycling of bonded NdFeB magnets has received much less attention than that of sintered NdFeB magnets. In this study, a novel flow sheet is presented for recycling of bonded NdFeB magnets that is applicable to sintered magnets as well. Demagnetized magnet powder was mixed with 25 or 40 wt./vol% NaOH solution and baked at 150 to 200 °C for 30 to 540 min. In this way, REE metals were transformed into their corresponding hydroxides, whereas iron metal formed NaFeO2. By washing the reaction mixture with water, 96.5% of Na was recovered as NaOH and Na2CO3, whereas 90.3% of B was recovered as borax. The calcine containing REE hydroxides and iron oxide was then leached at 60 or 90 °C with 20 vol% Versatic Acid 10 diluted in an aliphatic diluent. >95% of the REEs were dissolved, with
- KU Leuven Belgium
- Katholieke Universiteit Leuven Belgium
2 Research products, page 1 of 1
- 2020IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).41 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
