Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Biological Macromolecules
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Lignin-containing cellulose nanocrystals/sodium alginate beads as highly effective adsorbents for cationic organic dyes

Authors: Zhong Liu; Lanfeng Hui; Lin Dai; Lin Dai; Mingshuai Ma; Shaoyu Yuan; Zhen Shang; +3 Authors

Lignin-containing cellulose nanocrystals/sodium alginate beads as highly effective adsorbents for cationic organic dyes

Abstract

Cellulose nanocrystals (CNCs) is an exciting class of sustainable and carbohydrate material, which has great potential applications in molecular adsorption. However, the complex preparation process and limited adsorption capacity of CNCs hinder its commercial application. In this study, we design a novel functional cellulose nanocrystals-based adsorbent by an ingenious mixing of lignin-containing cellulose nanocrystals (LCNCs), sodium alginate (SA), and calcium chloride solution. Benefiting from the sulfonate groups of lignin, carboxyl groups of SA, the maximum adsorptive capability of LCNCs/SA beads for methylene blue was found to be 1181 mg g-1, which was significantly higher than previously reported biomass-based adsorbents. More importantly, LCNCs/SA beads can be reused several times. This strategy can not only improve the adsorption performance of CNCs-based materials, but also simplify the production technology of CNCs, which greatly promote the commercial application of CNCs materials.

Related Organizations
Keywords

Alginates, Reproducibility of Results, Hydrogels, Hydrogen-Ion Concentration, Lignin, Methylene Blue, Calcium Chloride, Kinetics, Cations, Nanoparticles, Thermodynamics, Adsorption, Biomass, Organic Chemicals, Cellulose, Coloring Agents

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research