
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A low pH does not determine the community dynamics of spontaneously developed backslopped liquid wheat sourdoughs but does influence their metabolite kinetics

This study dealt with the influence of a crucial pH value of 4.0 on the microbiota of spontaneously fermented backslopped liquid wheat sourdoughs. Two spontaneously fermented wheat sourdough fermentation experiments were carried out, one without control of the pH and one with the pH kept constant at pH4.0, both during nine backslopping steps. In each case, two additional backslopping steps were carried out, with the pH kept constant at 4.0 and with free pH, respectively. Keeping the pH constant at 4.0 changed the microbial community dynamics and metabolite kinetics of the sourdough fermentations. A slower prevalence of sourdough-specific Kazachstania yeasts occurred. Nevertheless, in both experiments, Lactobacillus fermentum, Lb. plantarum/pentosus/paraplantarum, and Kazachstania exigua/bulderi/barnettii prevailed ultimately. The lactic acid and ethanol concentration profiles were affected positively by keeping the pH constant at a minimum of 4.0 as well as the l- and d-lactic acid ratio profile, a potential biological marker for sourdough stability and maturity. Also, the concentration and diversity of acetate esters and their precursors, in particular isoamyl acetate and isoamyl alcohol, were affected negatively by the pH control, indicating the role of pH stress in the sourdough aroma formation.
- Vrije Universiteit Brussel Belgium
wheat sourdough, Limosilactobacillus fermentum, Ethanol, Microbiota, Acetoin, Flour, pH evolution, Bread, Acetates, Hydrogen-Ion Concentration, Gas Chromatography-Mass Spectrometry, Kinetics, Yeasts, Fermentation, ester, Mannitol, ethanol, Lactic Acid, Community dynamics, Triticum
wheat sourdough, Limosilactobacillus fermentum, Ethanol, Microbiota, Acetoin, Flour, pH evolution, Bread, Acetates, Hydrogen-Ion Concentration, Gas Chromatography-Mass Spectrometry, Kinetics, Yeasts, Fermentation, ester, Mannitol, ethanol, Lactic Acid, Community dynamics, Triticum
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).39 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
