Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Greenhouse Gas Control
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

CO2 sequestration for enhanced gas recovery: New measurements of supercritical CO2–CH4 dispersion in porous media and a review of recent research

Authors: Eric F. May; Aman S. Chauhan; Aman S. Chauhan; Brendan F. Graham; Abdolvahab Honari; Michael L. Johns; Thomas J. Hughes;

CO2 sequestration for enhanced gas recovery: New measurements of supercritical CO2–CH4 dispersion in porous media and a review of recent research

Abstract

Abstract The enhanced recovery of natural gas by the injection and sequestration of CO 2 is an attractive scenario for certain prospective field developments if the risks of gas contamination or early CO 2 breakthrough can be assessed reliably. Simulations of enhanced gas recovery (EGR) scenarios require accurate dispersion parameters at reservoir conditions to quantify the size of the miscible CO 2 –CH 4 displacement front; several experimental studies using core-flooding equipment aimed at measuring such parameters have been reported over the last decade. However, such measurements are particularly challenging and the data produced are generally afflicted in their repeatability by limited experimental control and in their accuracy by systematic errors such as gravitational and core-entrance/exit effects. We review here the existing experimental data pertaining to EGR by CO 2 sequestration and also report new measurements of longitudinal CO 2 –CH 4 dispersion coefficients at temperatures of 40–80 °C, pressures of 8–12 MPa and interstitial velocities of 0.05–1.13 mm s −1 [14.2–320 ft day −1 ] in 5–10 cm long sandstone cores with permeabilities of 12 and 460 mD. The core-floods were conducted in both a horizontal and vertical orientation, with significant gravitational effects observed for low velocity floods in horizontal cores with high permeabilities. We also analyzed the effects of tubing and core entrance/exit effects on the measurements and found that the latter resulted in apparent dispersion coefficients up to 63% larger than would be due to the core alone. Our results indicate that dispersivities for CO 2 –CH 4 at these supercritical conditions are less than 0.001 m, which indicates that excessive mixing will not occur in EGR scenarios in the absence of conformance effects such as heterogeneity coupled with injection well pattern. Inclusion of such conformance effects is essential for detailed reservoir simulation.

Country
Australia
Keywords

Diffusion, Enhanced gas recovery, Sequestration, Dispersion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    102
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
102
Top 1%
Top 10%
Top 10%