Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Greenhouse Gas Control
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Greenhouse Gas Control
Article . 2015
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Greenhouse Gas Control
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Experimental characterization of nonwetting phase trapping and implications for geologic CO2 sequestration

Authors: Ryan T. Armstrong; Brian K. Bay; Dorthe Wildenschild; Ivan Lunati; A. L. Herring; Elizabeth Harper Kimbrel;

Experimental characterization of nonwetting phase trapping and implications for geologic CO2 sequestration

Abstract

Abstract Geological carbon sequestration is being considered worldwide as a means of mitigating anthropogenic emission of greenhouse gases. During sequestration, carbon dioxide (CO 2 ) gas effluent is captured from coal-fired power plants or other concentrated emission sources and injected into saline aquifers or depleted oil reservoirs for long term storage. In an effort to fully understand and optimize CO 2 trapping efficiency, the capillary mechanisms that immobilize subsurface CO 2 were analyzed at the pore-scale. Pairs of proxy fluids representing the potential range of in-situ conditions of supercritical CO 2 (nonwetting fluid) and brine (wetting fluid) were used during experimentation. The two fluids were imbibed and drained from a flow cell apparatus containing a sintered glass bead core. Fluid parameters (such as interfacial tension and fluid viscosities) and flow rate were altered to characterize their relative impact on capillary trapping. Computed x-ray microtomography (microCT) was used to quantify immobilized nonwetting fluid volumes after imbibition and drainage events. MicroCT-analyzed data suggests that capillary trapping in sintered glass bead (a mildly consolidated porous medium) is dictated by the capillary number ( Ca ), the viscosity ratio ( M ), and the Bond number ( Bo ) of the system, reflecting that all three viscous, capillary, and gravity forces affect the displacement process to varying degree as their relative importance changes. The amount of residual trapped nonwetting phase was observed to increase with increasing nonwetting fluid viscosity, and with decreasing density difference of the fluids; this suggests that CO 2 sequestration can potentially be engineered for optimal trapping through alterations to the viscosity or density of supercritical CO 2 .

Related Organizations
Keywords

Energy(all), Management, Monitoring, Policy and Law, Pollution, Industrial and Manufacturing Engineering

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Top 10%
Top 10%
hybrid