Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Greenhouse Gas Control
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Wettability, hysteresis and fracture–matrix interaction during CO2 EOR and storage in fractured carbonate reservoirs

Authors: Simeon Agada; Sebastian Geiger; Florian Doster;

Wettability, hysteresis and fracture–matrix interaction during CO2 EOR and storage in fractured carbonate reservoirs

Abstract

Abstract Relative permeabilities show significant dependence on the saturation path during CO 2 enhanced oil recovery (EOR) and storage. This dependence (or hysteresis) is particularly important for water-alternating-gas (WAG) injection, a successful CO 2 EOR and storage method for clastic and carbonate reservoirs. WAG injection is characterized by an alternating sequence of drainage and imbibition cycles. Hysteresis is hence common and results in residual trapping of the CO 2 phase, which impacts the volume of CO 2 stored and the incremental oil recovery. The competition between hysteresis and geological heterogeneity during CO 2 EOR and storage, particularly in carbonate reservoirs, is not yet fully understood. In this study, we use a high-resolution simulation model of a Jurassic Carbonate ramp, which is an analogue for the highly prolific reservoirs of the Arab D formation in Qatar, to investigate the impact of hysteresis during CO 2 EOR and storage in heterogeneous carbonate formations. We then compare the impact of residual trapping (due to hysteresis) on recovery to the impact of heterogeneity in wettability and reservoir structure. End-member wettability scenarios and multiple wettability distribution approaches are tested, while, effective fracture permeabilities are computed using discrete fracture networks (DFN), ranging from sparsely distributed background fractures to fracture networks where intensity varies with proximity to faults. The results enable us to analyze the efficiency of oil recovery and CO 2 sequestration in carbonate reservoirs by comparing the impact of physical displacement processes (e.g., imbibition, drainage, residual trapping) and heterogeneous rock properties (e.g., wettability, faults, fractures, layering) that are typical in carbonate reservoirs. We show that although the fracture network properties have the greatest impact on the fluid flow, the effect of wettability and hysteresis is nontrivial. Our results emphasize the need for wettability to be accurately measured and appropriately distributed in a reservoir simulation model. Similarly, our results indicate that hysteresis effects in cyclic displacement processes must be accounted for in detail to ensure that simulation models give accurate predictions.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Top 10%
Top 10%