Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Publikationenserver ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Greenhouse Gas Control
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An integrated core-based analysis for the characterization of flow, transport and mineralogical parameters of the Heletz pilot CO 2 storage site reservoir

Authors: Florian Duschl; Jacob Bensabat; Tobias Licha; Bettina Wiegand; Aaron Peche; Aaron Peche; Auli Niemi; +4 Authors

An integrated core-based analysis for the characterization of flow, transport and mineralogical parameters of the Heletz pilot CO 2 storage site reservoir

Abstract

Abstract Heletz, Israel is the location for an onshore deep saline CO 2 storage pilot site. The ‘ Heletz sandstone ’ is the building unit of the deep saline reservoir. Based on core samples of sandstone and caprock taken from the newly drilled injection (H18A) and monitoring wells (H18B), this article examines and reports the petrophysical properties of the Heletz Formation reservoir important for the short and long term trapping of CO 2 . A suite of laboratory and pore-scale CT-based modeling techniques are employed to determine the flow and transport parameters used by the continuum-scale numerical simulators and the mineral composition necessary for the understanding of mineral trapping processes. The effect of diagenesis on the reservoir parameters was determined in the laboratory using sedimentological, petrological, and petrophysical analyses. Variations in 87 Sr/ 86 Sr isotope composition and fluid inclusion analysis bring additional information about the diagenetic development and define the status quo of fluid–mineral reactions before CO 2 injection. Cathodoluminescence microscopy and SEM/XRD revealed the amounts of minerals in the sandstone samples and caprock and explained the poor binding of the sandstone which may lead to mobilized material during injection. Digital image analysis on thin sections, cathodoluminescence, and SEM were integrated with attributes derived from mercury intrusion porosimetry, steady state gas permeametry or nuclear magnetic resonance to form an essential outline for the Heletz Formation reservoir. This relates storage space, injectivity and storage efficiency to features such as grain size, pore size distribution, effective porosity, intrinsic permeability, or tortuosity. Furthermore, the laboratory and numerical CT-based investigation techniques are compared and discussed. The benefit of combining experimental methods and numerical simulations on pore-scale models is the increase in confidence of the parameter accuracy, fundamental for the success of the planned activities at Heletz.

Country
Germany
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Average
Top 10%
Green