Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Greenhouse Gas Control
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mercury and SO 3 measurements on the fabric filter at the Callide Oxy-fuel Project during air and oxy-fuel firing transitions

Authors: Rohan Stanger; Timothy Ting; Chris Spero; Lawrence P. Belo; Terry Wall;

Mercury and SO 3 measurements on the fabric filter at the Callide Oxy-fuel Project during air and oxy-fuel firing transitions

Abstract

Abstract The Callide Oxy-fuel Project is the world's largest operating oxy-fuel plant. This work details an experimental test campaign at the Callide Oxy-fuel Project monitoring mercury and SO3 levels exiting the fabric filter during transitions between air and oxy firing conditions. The measurements were taken using two custom built probes; the first allowing combined collection of SO3 and mercury over short time intervals; the second allowing on-line measurements of Hgtotal and Hg0 with SOx removal. Total mercury emissions in oxy-firing measured a maximum of 6–7 μg/m3 of which 89% was in oxidised form (Hg2+). The use of low NOx burners had an overriding influence on the mercury measurements reducing the total mercury levels to 0.13 and 0.15 μg/m3 (air, oxy respectively) with no Hg2+ being measured. The SO3 concentrations were also lower than expected, estimated at ∼0.5–0.8 ppm (based on a practical estimate of 1% conversion of SO2). Overall mercury capture in either operating mode was estimated at 92–93% for the existing burners and 98–99% with the low NOx burners used (being 2 of the 4 burners operating). Total SOx captured from the flue gas was 16% in oxy-mode and 19% in air firing. These findings suggest that operational conditions have a primary impact on capture of Hg and SOx during transitions with a secondary impact of firing mode (i.e. air or oxy).

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Average
Top 10%