Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Greenhouse Gas Control
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparison of CO 2 liquefaction pressures for ship-based carbon capture and storage (CCS) chain

Authors: Sangick Lee; Daejun Chang; Youngkyun Seo; Cheol Huh;

Comparison of CO 2 liquefaction pressures for ship-based carbon capture and storage (CCS) chain

Abstract

Abstract This study proposed ship-based carbon capture and storage (CCS) chains with different CO 2 liquefaction pressures and compared them in terms of life cycle cost (LCC) to determine the optimal pressure. Seven liquefaction pressures were suggested between the triple point (5.18 bar, −56.6 °C) and the critical point (73.8 bar, 31.1 °C) of CO 2 with increments of 10 bar, and the chain was divided into five modules: a liquefaction system, storage tanks, a CO 2 carrier, storage tanks in the intermediate terminal and a pumping system. LCC, including capital expenditure (CAPEX) and operational expenditure (OPEX), was used to estimate the CAPEX and OPEX of the five systems of the chain with each of the seven liquefaction pressures. The results showed that the optimal liquefaction pressure was 15 bar (−27 °C), which had an appropriate pressure, temperature, and density. As the liquefaction pressure increased, the costs of the liquefaction and pumping system decreased, and the costs of the storage tanks and CO 2 carrier increased. The cost of the liquefaction system was the largest contributor to the LCC, whereas the pumping system accounted for the smallest part. Sensitivity analysis was performed because this study was carried out in an early design stage with data subject to some uncertainty. The results of the sensitivity analysis showed that the optimal pressure was 15 bar without regard to the disposal amount, the distance from source to sink, the uncertainty of an employed methodology, and unit electricity cost.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    92
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
92
Top 1%
Top 10%
Top 10%