
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Carbon capture and storage across fuels and sectors in energy system transformation pathways

Abstract Carbon capture and storage (CCS) is broadly understood to be a key mitigation technology, yet modeling analyses provide different results regarding the applications in which it might be used most effectively. Here we use the Global Change Assessment Model (GCAM) to explore the sensitivity of CCS deployment across sectors and fuels to future technology cost assumptions. We find that CCS is deployed preferentially in electricity generation or in liquid fuels production, depending on CCS and biofuels production cost assumptions. We consistently find significant deployment across both sectors in all of the scenarios considered here, with bioenergy with CCS (BECCS) often the dominant application. As such, this study challenges the view that CCS will primarily be coupled with power plants and used mainly in conjunction with fossil fuels, and suggests greater focus on practical implications of significant CCS and BECCS deployment to inform energy system transformation scenarios over the 21st century.
- Canadian Cardiovascular Society Canada
- ExxonMobil (United States) United States
- Pacific Northwest National Laboratory United States
- ExxonMobil (United States) United States
- University Research Co (United States) United States
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).76 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
