Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Greenhouse Gas Control
Article . 2019 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Greenhouse Gas Control
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
SINTEF Open
Article . 2019
Data sources: SINTEF Open
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Gas Switching Reforming (GSR) for syngas production with integrated CO2 capture using iron-based oxygen carriers

Authors: Julian R. Tolchard; Shahriar Amini; Shahriar Amini; Schalk Cloete; Paul Inge Dahl; Ambrose Ugwu; Abdelghafour Zaabout;

Gas Switching Reforming (GSR) for syngas production with integrated CO2 capture using iron-based oxygen carriers

Abstract

Abstract The process behavior of a Gas Switching Reforming (GSR) reactor was studied using three different iron-based oxygen carrier materials: Iron-oxide on Alumina, Iron-Nickel oxide on Alumina and Iron-Ceria on Alumina. It was observed that, for all oxygen carriers, the fuel stage reaction occurs in two distinct sub-stages when feeding methane and steam to a bed of oxidized material, with methane combustion dominating the first and methane reforming dominating the second. This reflects a change in the catalytic activity of the oxygen carrier as it is reduced. The alumina support was observed to play a significant role in the reactions occurring, with the redox-active phases being hematite-structured Fe2O3 (oxidized form) and spinel-structured (FeNiAl)3O4 (reduced form). The Nickel-containing oxygen carrier outperformed the others in the reforming sub-stage, showing 40% improved methane conversion. The feed of dry methane only during the combustion sub-stage was found to improve methane conversion to syngas in the subsequent reforming sub-stage from 75% to 80% at 800 °C. Results also show that methane conversion improves with the increase in operating temperature and steam/carbon ratio. Autothermal operation of the reactor was achieved with repeatable performance over several redox cycles. The study therefore successfully demonstrated autothermal N2-free syngas production with integrated CO2 capture from the fuel combustion required to supply heat to the endothermic reforming reactions.

Country
Norway
Keywords

Autothermal operation, Standalone fluidized bed, Gas switching reforming, Chemical looping reforming, Iron-based oxygen carrier

Powered by OpenAIRE graph
Found an issue? Give us feedback